基于ADVISOR的动力系统设计及其仿真分析

分享到:

引言

为了解决世界的能源和环保问题,电动汽车的研发倍受关注。但我国电动汽车的研发工作,大多建立在对现有燃油汽车进行改装设计的基础上完成的。因此,为了研制出经济、实用的电动汽车,利用先进的仿真技术对其性能进行仿真分析是非常必要的。本文在对某微型燃油汽车底盘进行改装设计的基础上,利用ADVISOR仿真软件对其性能进行仿真分析,从而为该微型电动汽车的设计和产业化提供参考。

  1 动力系统设计及主要部件选择

电动汽车与传统的燃油汽车的真正区别在于动力系统。电动汽车是用电力驱动车辆,由蓄电池供电,通过电动机及控制器将电能转化为机械能来驱动整车。由某微型燃油汽车底盘改装设计的微型电动汽车动力系统结构如图1所示。

作为电动汽车的动力源蓄电池,是电动汽车的关键部件,决定着电动汽车的多方面性能。目前正在使用的蓄电池种类很多,如铅酸蓄电池、镍铬蓄电池、镍氢蓄电池等。其中铅酸蓄电池具有通用、技术成熟、廉价、比能量适中、高倍率放电性能好、高低温性能良好等优点,因而得到广泛的应用。

  电动机及驱动系统将蓄电池的能量转换为车轮的动能,或者将车轮上的动能反馈到蓄电池中。目前正在应用或开发的电动汽车电动机主要有直流电动机、交流感应电动机、永磁无刷直流电动机和开关磁阻电动机等。而永磁无刷直流电动机不仅具有较高的重量比功率,而且集电动、发电及制动功能于一体,效率高,控制灵活,得到电动汽车领域内广泛关注。

故本文选用以铅酸蓄电池组和无刷直流电动机等部件构成的动力系统来替代原燃油微型汽车的内燃机和油箱。

  2 仿真模型的建立

2.1 蓄电池系统仿真模型

本文建立的铅酸蓄电池系统仿真模型如图2所示。该模型描述了储存在蓄电池内的能量接受请求功率,从蓄电池中返回可用功率或实际功率的过程。

它主要包括以下模块:

1)开路电压和内阻的计算模块。在电动汽车仿真中,最常见的蓄电池模型是内阻模型。该模型将蓄电池看成一个理想电压源串联一个内阻的等效电路,其电压特性为:

式中:Voc为开路电压(V);U为电池工作电压(V);R为电池等效内阻(Ω)。
由(1)式可计算出在给定荷电状态(SOC)和请求电池功率状态下的开路电压Voc和内阻R。

2)电流计算模块。电流计算是通过一个二次方程求解得到的,即:

式中P为功率。

3)功率限制模块。此模块用来限制请求功率不得超过电池功率。

4)SOC运算模块。荷电状态(SOC)的数值可用下式计算:
SOC=(初始电量-已用电量)/初始电量 (3)
其中,已用电量采用安培时间积分法计算。

5)热量模块。在电动汽车行驶和充放电时,热量模块主要用来预测以时间为函数的电池温度。

2.2 电动机及驱动系统仿真模型

电动机及驱动系统的建模基础是电动机的电压、转矩、功率的平衡方程和运动特性方程。若假定绕组完全对称、主电路电流连续、磁阻恒定、忽略粘性摩擦,则可得到无刷直流电机的电压平衡方程:

式中:ua、ub、uc分别为定子相绕组电压(V);ia、ib、ic分别为定子相绕组电流(A);ea、eb、ec分别为定子相绕组电动势(V);R为每相绕组的电阻(Ω);L为每相绕组的自感(H);M为每两相绕组间的互感(H)。

根据电压平衡方程式(4)可以得到电动机的等效电路图,如图3所示。

这样,电动机的电磁转矩tem为:

继续阅读
松下面向中国市场开发出车载通用薄膜电容器

松下电子部品(Panasonic Electronic Devices)开发出了面向电动汽车(EV)和混合动力车(HEV)的通用薄膜电容器。其特点是定位于多种车辆的“通用品”,而非只用于特定车辆的产品

电动汽车发展应有高标准护航

近日发生在深圳的一起重大交通事故,把电动汽车的安全性问题推向风口浪尖。26日凌晨,深圳市滨海大道侨城东路段,一辆G T R跑车与一辆宝马深夜街头狂飙,途中撞上两辆的士,致使其中一辆比亚迪电动出租车起火

电动汽车产业哪里才是突破口?

尽管电动汽车在中国一直是处于“雷声大、雨点小”的尴尬处境,“靠电动车弯道超车”依然是中国自主车企的梦想。最近,上汽集团荣威品牌推出首款量产纯电动车E50,比亚迪发布“零元购车、零成本、零排放”城市公交

基于三段式充电控制方案的电动汽车智能充电器设计

1.引言电池是电动汽车的关键动力输出单位,在铅酸蓄电池,镍镉电池,镍氢电池,锂电池和燃料电池等几种常用电池中,因为具有能量比大、重量轻、温度特性好,污染低,记忆效果不明显等特点,镍氢电池在电动汽车中使

电动汽车尚有三大问题待解

电动汽车无疑会是今后的发展方向,但是现在的舆论大多强调其优点和好处,而忽视其问题。 成本高是首要问题。在美国市面上有多款电动汽车销售,但是除了特斯拉的高端汽车外,无论哪一款为大众准备的电动车(包括可