汽车电子控制器的模态仿真技术研究

分享到:

1 前言

随着汽车电子产品在整车中的广泛应用,汽车电子产品的可靠性也备受关注。振动问题是影响汽车电子产品可靠性的一个重要因素,如果在研发设计阶段就能准确的预估汽车电子产品的振动特性,则对汽车电子产品的可靠性设计具有重大的意义。利用有限元技术能够在研发设计阶段预估汽车电子产品的振动特性,但是对于具有复杂结构的电子产品来说,由于模型的复杂度,材料参数的不确定性、边界设定的非线性、计算机配置要求等因素的影响,使仿真结果的可信度不高。因此提高仿真分析的可信度是当今仿真工作者的首要任务。本文对某具有复杂结构的汽车电子控制器进行了模态仿真分析和模态试验,并对仿真分析中的几何模型修正,单元类型选择,边界条件设定等方法进行了研究。

2 汽车电子控制器结构介绍

汽车电子控制器由PCBA(集成电路板)和上、下壳体组成,如图1所示(为展示控制器内部结构,剖掉部分壳体)。装配该控制器时,先把PCBA沿壳体上的卡槽插入下壳体中,再把上壳体扣合到下壳体上,完成装配。该控制器在车上的安装方式是:用螺栓穿过壳体上的安装耳再固定到支架上。

 

图1 控制器的实物图

 

 

图2 上壳体的修正模型

 

 

图3 PCBA的修正模型

 

 



3 有限元建模和仿真计算

3.1几何模型修正

在实际工作中发现,几何模型修正的好坏决定着网格质量的好坏。对复杂的模型来说,不修正几何模型,会增加奇异单元的数目和单元的总数目,导致仿真分析周期变长,分析成本变大,甚至使仿真分析无法进行。该控制器的PCBA上有成百上千个微小的孔和器件,壳体上有过密的硬点和线以及微小的倒圆角等,如果不修正几何模型,在中等配置的HP工作站上无法完成分析。所以在划分网格前,先对该控制器的几何模型进行修正。几何模型修正工作包括:去掉较小的倒圆角和圆孔;隐藏过密的曲线和硬点;切分不规则的几何体;忽略微小电器件等。该控制器修正后的几何模型如图2、图3、图4所示。

3.2有限元网格划分和单元类型选择

控制器的各部件均采用3D实体单元建模。其中PCBA由电路板、电容、电阻、天线、小电路板、插件,插针等部件组成,这些部件的形状较规则,采用一阶六面体单元建模,单元类型为C3D8R,需进行沙漏控制。上、下壳体的形状比较复杂,用二阶四面体进行建模,单元类型为C3D10M。模态分析时,不要使用一阶四面体单元,因为一阶四面体单元刚性偏强,容易导致模态频率偏大(下文将会给出验证)。

继续阅读
恩智浦携手广汽集团共同开发新一代车载网关平台

恩智浦半导体(纳斯达克代码:NXPI,以下简称“恩智浦”)今日宣布携手广汽集团共同开发基于以太网和安全的新一代车载网关平台,从而推动国内首个整车制造企业自主研发的以太网网关项目落地。恩智浦将为该平台的开发提供参考设计和完整的网关解决方案,涵盖微控制器和网络接口等半导体器件。双方将通过半导体企业与整车制造企业直接开展技术合作的形式,实现我国汽车产业生态合作模式的突破及创新。

基于K线的BCM诊断的实现

引言:随着汽车电子系统越来越复杂,诊断功能已经成为ECU软件设计的一个重要组成部分,对ECU控制系统的正常运行及其大规模应用的市场化过程非常关键。随着ECU功能的增加以及升级换代的需要,诊断标准及厂商

汽车电子产值破3000亿但核心技术仍缺失

中国的汽车电子业似乎到了爆发的时机,2012年中国汽车电子产值将达3000亿元,谁都没有否认这一产业会发展得如此迅速。在光鲜的背后这一产业的本土成分真正占到了多少,没有人进行统计。 核心技术的缺失注

恩智浦“汽车电子与智能交通”战略星盘

当恩智浦物联星球的大幕缓缓开启,拨开银行卡安全的物联迷云,恩智浦在华“汽车电子与智能交通”的战略星盘,也日渐清晰地呈现在众人眼前。随着汽车新注册量和年增量均达历史最高水平,智能交通已是势在必行。作为全球最大的汽车半导体供应商和安全互联汽车的领导者,恩智浦致力于通过引进国际领先的技术和经验推动中国的“智能交通”互利合作的大潮。本篇文章就带您一览恩智浦在“汽车电子与智能交通”领域的风采。

基于ISO26262的动力电池BMS解决方案

在汽车行业,提高安全性永远是不变的科技趋势。电池管理系统BMS引入汽车电子行业标准ISO26262,有助于规范产品质量体系,推动行业健康发展。BMS即Battery Management System,电池管理系统,作为新能源汽车“三电”核心技术之一,BMS在HEV/EV上扮演重要作用。

精彩活动