研究者发现量子计算可将光线追踪的性能提高190%

分享到:

美国、葡萄牙和英国的研究人员预测,解决光线追踪的高额性能要求的办法可能是将旧的光线追踪算法与量子计算混合起来。在最近发表的一份研究白皮书中,量子计算增强了光线追踪的工作负荷,性能提高了190%。这个过程是通过限制每条光线所需的计算数量来完成的。

 

 

图形技术中的光线追踪使游戏有了进化的飞跃,特别是游戏的渲染方式。然而,与复杂性相比,性能和开发人员正确采用这一过程的能力都是次要的。问题在于光线追踪技术的硬件和计算要求,以及对特定硬件的必要性,这限制了大多数用户对核心技术的使用。

研究人员描述了量子计算如何有可能将光线追踪技术造成的处理税降到最低。该小组取了一张启用了光线追踪技术的128x128的图像,并使用三种不同的策略对该图像进行了优化。这三个过程是经典的渲染技术,未经优化的量子渲染,然后是对量子渲染的优化。第一种技术在三维图像上计算了26.78亿个光线交叉点,为每条单独的光线提供了64个。未优化的方法将第一个数字减少了一半,只需要33.6个光线交叉点,相当于13.66亿个光线交叉点。利用优化的量子技术和经典系统,最后的尝试呈现了89.6万个交叉点,每条射线有22.1个交叉点的图像。

 

 

该技术最重要的缺点是量子计算系统。量子计算机和设备目前正在开发NISQ,即噪声中等规模的量子产品类别。这些错综复杂的系统在性能上不是最高的,所以渲染需要几个小时来正确计算每个图像。这个类别非常适合模拟,但目前对于渲染游戏来说,它几乎不是一个可行的选择。

尽管结果很好,但该技术还远远不能用于生产。在过去一年到两年里,以目前量子计算的趋势,我们只看到了少量的量子计算可供使用。IBM计划在未来几年增加量子计算的数量,但该技术在短时间内会有多大的进步还不得而知。

继续阅读
研究者发现量子计算可将光线追踪的性能提高190%

美国、葡萄牙和英国的研究人员预测,解决光线追踪的高额性能要求的办法可能是将旧的光线追踪算法与量子计算混合起来。在最近发表的一份研究白皮书中,量子计算增强了光线追踪的工作负荷,性能提高了190%。这个过程是通过限制每条光线所需的计算数量来完成的。

硅光子赋能量子计算和光神经网络,助飞计算新时代

在过去二十年间,绝缘体上硅(SOI)衬底技术一直是硅光子集成电路的重要基石。SOI 不仅助力硅光子在数据中心互连领域获得商业成功,也助推了高速光收发器的大规模应用。如今,新一代计算市场不断扩张,为了满足更多的需求,许多新兴应用也开始大规模接入硅光子平台及其背后成熟的生态。例如,面向消费者的医疗保健监测设备的传感、基于激光雷达(LiDAR)的图像传感器,以及光学量子计算和光神经网络。

后摩尔时代计算能力提升,还看量子计算?

量子计算是基于量子力学的全新计算模式,具有原理上远超经典计算的强大并行计算能力,为人工智能、密码分析、气象预报、资源勘探、药物设计等所需的大规模计算难题提供了解决方案,并可揭示量子相变、高温超导、量子霍尔效应等复杂物理机制。

比超级计算机快千万倍!我国量子计算研究获重要进展

近日,中科院量子信息与量子科技创新研究院科研团队在超导量子和光量子两种系统的量子计算方面取得重要进展,使我国成为目前世界上唯一在两种物理体系达到“量子计算优越性”里程碑的国家。

好家伙,智能手机未来的看点是光线追踪?

2018年,英伟达宣布了一项名为“光线追踪”(ray tracing)的图形渲染技术,可以提升游戏、CG动画的画面质量,目前只有高端游戏显卡,以及最新发布的次世代游戏主机支持这项技术。

精彩活动